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Abstract We estimate the Lieb-Robsinon velocity, also known as the group velocity, for a
system of harmonic oscillators and a variety of anharmonic perturbations with mainly short-
range interactions. Such bounds demonstrate a quasi-locality of the dynamics in the sense
that the support of the time evolution of a local observable remains essentially local. Our
anharmonic estimates are applicable to a special class of observables, the Weyl functions,
and the bounds which follow are not only independent of the volume but also the initial
condition.

Keywords Lieb-Robinson · Locality bounds · Classical dynamics · Anharmonic · Group
velocity

1 Introduction

A notion of locality is crucial in rigorously analyzing most physical systems. Typically, sets
of local observables are associated with bounded regions of space, and one is interested in
how these observables evolve dynamically with respect to the interactions governing the sys-
tem. In relativistic theories, the evolution of a local observable remains local, i.e. the support
of dynamically evolved local observables is restricted to a light cone. For non-relativistic
models, such as those we will be considering in the present work, the dynamics does not
preserve locality in the sense that, generically, an observable initially chosen localized to a
particular site is immediately evolved into an observable dependent on all sites of the system.

In 1972, Lieb and Robinson [8] explored a quasi-locality of the dynamics corresponding
to non-relativistic quantum spin systems. Roughly speaking, a quantum spin system is de-
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scribed by a self-adjoint Hamiltonian, which describes the interactions of the system, and
its associated Heisenberg dynamics, see e.g. [2] for more details. The estimates they proved
demonstrate that, up to exponentially small errors, the time evolution of a local observable
remains essentially supported in a ball of radius proportional to v|t | for some v > 0. This
quantity v, which we describe as a Lieb-Robinson velocity, defines a natural rate of prop-
agation, and it can be estimated in terms of the system’s free parameters, for example, the
interaction strength of the Hamiltonian.

The models analyzed in this paper will correspond to a classical system of oscillators
evolving according to a Hamiltonian dynamics. Hamiltonians of this type have frequently
appeared in the literature as their analysis provides an important means of studying the emer-
gence of non-equilibrium phenomena in macroscopic systems. For example, rigorous results
on the existence of the thermodynamic limit for these models date back to [9]. A notion of
quasi-locality, similar to the Lieb-Robinson bounds mentioned above, for these classical
oscillator systems was originally considered in 1978 by Marchioro et al. in [15]. More re-
cently, a nice generalization of the estimates found in [15], those pertaining to models with,
e.g. a quartic on-site term, appeared in [4]. Both of these results were obtained in the spirit
of deriving a classical analogue of the Lieb-Robinson bounds found in [8].

Over the past few years a number of important improvements on the original Lieb-
Robinson bounds have appeared in the literature [5, 6, 10–12], see [14] for the most cur-
rent review article. These new estimates have found a variety of intriguing applications
[3, 5, 7, 13], but perhaps most interestingly for the present work, the results found in [11]
establish bounds which are applicable beyond the context of quantum spin systems. In [11],
the authors prove a version of the Lieb-Robinson bounds for quantum anharmonic lattice
systems. Motivated by [11], the main goal of this paper is to employ these new methods
to establish explicit bounds on the Lieb-Robinson velocity for a large class of anharmonic
lattice systems.

To express our results more precisely, we introduce the following notation. We will con-
sider systems confined to a large but finite subset Λ ⊂ Z

ν ; here ν ≥ 1 is an integer. With each
site x ∈ Λ, we will associate an oscillator with coordinate qx ∈ R and momentum px ∈ R.
The state of the system in Λ will be described by a sequence x = {(qx,px)}x∈Λ, and phase
space, i.e. the set of all such sequences, will be denoted by XΛ.

A Hamiltonian, H , is a real-valued function on phase space. Typically the Hamiltonian
of interest generates a flow, Φt , on phase space. Specifically, given H : XΛ → R one defines,
for any t ∈ R, a function Φt : XΛ → XΛ by setting Φt(x) = {(qx(t),px(t))}x∈Λ, the sequence
whose components satisfy Hamilton’s equations: for any x ∈ Λ,

q̇x(t) = ∂H

∂px

(Φt(x)) ,

ṗx(t) = − ∂H

∂qx

(Φt (x)) ,

(1.1)

with initial condition Φ0(x) = x.
To measure the effects of this Hamiltonian dynamics on the system, one introduces ob-

servables. An observable A is a complex-valued function of phase space. We will denote by
AΛ the space of all local observables in Λ, i.e. the set of all functions A : XΛ → C. A given
Hamiltonian, H , generates a dynamics αt on the space of local observables in the sense that,
for any t ∈ R, the dynamics αt : AΛ → AΛ is defined by setting αt (A) = A ◦ Φt .

For the locality result we will present, the notion of support of a local observable is
important. Given A ∈ AΛ, the support of A is defined to be the minimal set X ⊂ Λ for
which A depends only on those parameters qx or px with x ∈ X.
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In classical systems evolving with a Hamiltonian dynamics, quasi-locality can be ex-
pressed in terms of the Poisson bracket between local observables. Here the Poisson bracket
is the observable given by

{A,B} =
∑

x∈Λ

∂A

∂qx

· ∂B

∂px

− ∂A

∂px

· ∂B

∂qx

, (1.2)

for sufficiently smooth observables A and B . Observe that for disjoint subsets X,Y ⊂ Λ and
observables A with support in X and B with support in Y , it is clear that {A,B} = 0. The
quasi-locality question of interest in this context is: given a Hamiltonian H , its correspond-
ing dynamics αt , and a pair of observables A and B with disjoint supports, does the quantity
{αt (A),B} satisfy an estimate, which decays in the distance between the supports of A and
B , for small times t? Note that {αt (A),B}|t=0 = {A,B} = 0. We say that a Hamiltonian
H has a finite Lieb-Robinson velocity, if for some μ > 0 there exists v > 0 for which an
estimate of the form

|{αt (A),B} (x)| ≤ Ce−μ(d(X,Y )−v|t |), (1.3)

holds for a class of local observables A and B and t sufficiently small. Here d(X,Y ) denotes
the distance between the supports of the local observables A and B . This bound demon-
strates that for times t with |t | ≤ d(X,Y )/v, the Poisson bracket remains exponentially
small. With H and μ fixed, the infimum over all v > 0 for which (1.3) holds is the system’s
Lieb-Robinson velocity. The main goal of this paper is to provide estimates on this quantity
for a variety of models. In proving bounds of the form (1.3), special attention must be given
to the dependence of the numbers C and v on the observables A and B , the initial condition
x, and the free parameters in the Hamiltonian. Most crucially, these numbers must be inde-
pendent of the underlying volume Λ, so that they persist in the thermodynamic limit; once
the existence of such a limit has been established.

We begin our analysis by considering finite volume restrictions of the harmonic Hamil-
tonian, i.e. HΛ

h : XΛ → R is given by

HΛ
h (x) =

∑

x∈Λ

p2
x + ω2q2

x +
ν∑

j=1

λj (qx − qx+ej
)2, (1.4)

where ej , for j = 1, . . . , ν, are the canonical basis vectors in Z
ν , and the parameters ω ≥ 0

and λj ≥ 0 are the on-site and coupling strength, respectively. As is well-known, a variety
of explicit calculations may be performed for this harmonic Hamiltonian. Perhaps most
importantly, for any integer L ≥ 1 and each subset ΛL = (−L,L]ν ⊂ Z

ν , the flow Φ
h,L
t

corresponding to H
ΛL
h may be explicitly computed, see Sect. 2.1 for details. Once the flow

is known, a locality estimate easily follows for a specific set of observables.
We will equip the set of local observables AΛL

with the sup-norm, and we will say that
A ∈ AΛL

is bounded if

‖A‖∞ = sup
x∈XΛL

|A(x)| (1.5)

is finite. Furthermore, we will denote by A(1)
ΛL

the set of all A ∈ AΛL
for which: given any

x ∈ ΛL, ∂A
∂qx

∈ AΛL
, ∂A

∂px
∈ AΛL

, and

‖∂A‖∞ = sup
x∈ΛL

max

(∥∥∥∥
∂A

∂qx

∥∥∥∥∞
,

∥∥∥∥
∂A

∂px

∥∥∥∥∞

)
< ∞. (1.6)
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We can now state our first result.

Theorem 1 Let X and Y be finite subsets of Z
ν and take L0 to be the smallest integer such

that X,Y ⊂ ΛL0 . For any L ≥ L0, denote by α
h,L
t the dynamics corresponding to H

ΛL
h . For

any μ > 0 and any observables A,B ∈ A(1)
ΛL0

with support of A in X and support of B in Y ,
there exist positive numbers C and vh, both independent of L, such that the bound

∥∥{αh,L
t (A),B

}∥∥∞ ≤ C‖∂A‖∞‖∂B‖∞ min(|X|, |Y |)e−μ(d(X,Y )−vh|t |) (1.7)

holds for all t ∈ R.

Some additional comments are in order. First, the quantity d(X,Y ) appearing above de-
notes the distance between the sets X and Y , measured in the L1-sense, and for any Z ⊂ ΛL,
the number |Z| is the cardinality of Z. Next, the fact that the bound (1.7) is true for any
μ > 0 implies that the Poisson bracket above has arbitrarily fast exponential decay in space.
To achieve faster decay in space, however, the number C and the harmonic Lieb-Robinson
velocity vh increase. We describe our optimal bound on the harmonic velocity vh(μ) in
Sect. 2.2. Lastly, it is important to note that the quantities C and vh are not only independent
of the length scale L, they are also independent of the initial condition x ∈ XΛL

.
An analogue of Theorem 1 appears already in [15]. In fact, for a specific one-dimensional

system it is shown in [15] that an estimate of the form (1.7) follows from known results for
Bessel functions; see also comments prior to Theorem 3 in Sect. 2.2. For our more general
harmonic interactions in multi-dimensions, a similar analysis applies. This is the content of
Sect. 2. Moreover, to prepare for our perturbative analysis in Sects. 3 and 4, we also provide
explicit estimates on the harmonic Lieb-Robinson velocity, vh, in terms of the system’s free
parameters ω ≥ 0 and λi ≥ 0; see (2.30) and the comments following.

Our next result, Theorem 2 below, concerns on-site perturbations of the harmonic Hamil-
tonian. To state this precisely, fix a function V : R → R. For any site z ∈ Z

ν define
Vz : XΛL

→ R by setting Vz(x) = V (qz). We consider finite volume anharmonic Hamil-
tonians HΛL : XΛL

→ R of the form

HΛL = H
ΛL
h +

∑

z∈ΛL

Vz. (1.8)

In order to prove Theorem 2, we need the following assumptions on V : V ∈ C2(R), V ′ ∈
L1(R), V ′′ ∈ L∞(R), and

κV =
∫

|r| ∣∣V̂ ′(r)
∣∣dr < ∞.

Here V̂ ′ is the Fourier transform of V ′. Under these assumptions, we prove a locality result
analogous to Theorem 1. A specific class of observables, the Weyl functions, are particularly
well-suited for our considerations, see Sect. 2.3 and Sect. 4. They are defined as follows.
For any function f : ΛL → C, the Weyl function generated by f , denoted by W(f ), is the
observable W(f ) : XΛL

→ C given by

[W(f )](x) = exp

⎡

⎣i
∑

x∈ΛL

Re[f (x)]qx + Im[f (x)]px

⎤

⎦ . (1.9)

Clearly, if f is supported in X ⊂ ΛL, then W(f ) is supported in X as well. Moreover, it is
easy to see that for any function f : ΛL → C, ‖W(f )‖∞ = 1. Our next result is
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Theorem 2 Let V : R → R satisfy V ∈ C2(R), V ′ ∈ L1(R), V ′′ ∈ L∞(R), and κV , as de-
fined above, is finite. Take X and Y to be finite subsets of Z

ν and let L0 be the smallest
integer such that X,Y ⊂ ΛL0 . For any L ≥ L0, denote by αL

t the dynamics corresponding
to HΛL . For any μ > 0 and any functions f,g : ΛL0 → C with support of f in X and sup-
port of g in Y , there exist a positive numbers C and vah, both independent of L, such that
the bound

∥∥{αL
t (W(f )),W(g)

}∥∥
∞ ≤ C‖f ‖∞‖g‖∞ min(|X|, |Y |)e−μ(d(X,Y )−vah|t |) (1.10)

holds for all t ∈ R.

Through our method of proof, we are able to estimate the anharmonic Lieb-Robinson
velocity, vah, appearing in the statement of Theorem 2 above. In fact, for any μ > 0 and
each ε > 0,

vah(μ) ≤
(

1 + ε

μ

)
vh(μ + ε) + CκV

μ
, (1.11)

and hence the anharmonic velocity can be bounded by an explicit perturbation of the har-
monic velocity. For more details, see Sect. 3.

Let us briefly compare Theorem 2 with the results of [15] and [4]. In [15], two distinct
anharmonic models are considered. The first is a multi-dimensional rotator model with a
compact configuration space. For such a system, the existence of a finite Lieb-Robinson
velocity is established, yet no explicit estimates are provided. Next, the authors consider
a model with a quartic on-site term, i.e. they take Vz(x) = q4

z as above. Beginning in [15]
and later improved in [4], an important quasi-locality result is proven. More specifically,
it is demonstrated that for almost every initial condition, measured with respect to a state
satisfying a super-stability estimate, the relevant Poisson bracket is exponentially small in
time whenever the distance between the supports of the local observables grows faster than
t logα(t) for suitable α > 0. Our methods do not apply to such a strong perturbation, how-
ever, the established result is insufficient to conclude the existence of a finite Lieb-Robinson
velocity.

Using distinct perturbative methods, our results provide explicit estimates on the Lieb-
Robinson velocity for a large class of anharmonicities. We do not assume compactness of
configuration space nor do we make reference to a state satisfying a super-stability estimate.
As we prove in Sect. 4, our methods also apply to multi-site perturbations with sufficiently
fast decay.

The paper is organized as follows. In Sect. 2, we discuss our results concerning the Har-
monic Hamiltonian and prove Theorem 1. Using an interpolation argument, we prove The-
orem 2 in Sect. 3. This result demonstrates that the anharmonic velocity can be estimated
in terms of the harmonic velocity and an additive shift which is quantifiable in terms of the
perturbation. In Sect. 4, we generalize Theorem 2 to cover a wide class of multi-site pertur-
bations. Finally, Sect. 5 contains a variety of useful solution estimates used throughout the
paper. These well-known results we include for the sake of completeness.

2 The Harmonic Hamiltonian

The main goal of this section is to prove Theorem 1. For the convenience of the reader,
we begin with a subsection describing some basic features of the harmonic Hamiltonian.
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In particular, we reintroduce the Hamiltonian and find an explicit expression for the corre-
sponding flow. In the subsections which follow, we prove two locality estimates, both with
finite group velocities. The first is valid for a general class of smooth and bounded observ-
ables. The next holds for a special class of observables, the Weyl functions. This latter result
will be particularly useful in subsequent sections.

2.1 Some Basics

For any integer L ≥ 1, we consider subsets ΛL = (−L,L]ν ⊂ Z
ν and the finite volume

harmonic Hamiltonian H
ΛL
h : XΛL

→ R given by

H
ΛL
h (x) =

∑

x∈ΛL

p2
x + ω2q2

x +
ν∑

j=1

λj (qx − qx+ej
)2. (2.1)

Here, for each j = 1, . . . , ν, the ej are the canonical basis vectors in Z
ν , ω ≥ 0, and λj ≥ 0.

The model in (2.1) is defined with periodic boundary conditions, in the sense that qx+ej
=

qx−(2L−1)ej
if x ∈ ΛL but x + ej /∈ ΛL.

Our first task is to provide an explicit expression for the flow corresponding to (2.1).
In doing so, we will fix an integer value of L ≥ 1 and drop its dependence in a variety
of quantities to ease notation. Given any x ∈ XΛL

and t ∈ R, the components of Φh
t (x) =

{(qx(t),px(t))}x∈ΛL
satisfy the following coupled system of differential equations: for each

x ∈ ΛL and t ∈ R,

q̇x(t) = 2px(t),

ṗx(t) = − 2ω2qx(t) − 2
ν∑

j=1

λj

(
2qx(t) − qx+ej

(t) − qx−ej
(t)
) (2.2)

with initial condition {(qx(0),px(0))}x∈ΛL
= x. Introducing Fourier variables, the system

defined by (2.2) decouples which leads to an exact solution. This is the content of Lemma 1
found below.

Before stating Lemma 1, it is useful to introduce some additional notation. Fourier sums
will be defined via the set Λ∗

L given by

Λ∗
L =

{xπ

L
: x ∈ ΛL

}
.

Note that Λ∗
L ⊂ (−π,π ]ν and |Λ∗

L| = |ΛL| = (2L)ν . The following functions play an im-
portant role in our calculations. Suppose ω > 0 and take γ : Λ∗

L → R to be given by

γ (k) =
√√√√ω2 + 4

ν∑

j=1

λj sin2(kj /2), (2.3)

and for each m ∈ {−1,0,1} and any t ∈ R, set h
(m)
t : ΛL → R to be

h
(−1)
t (x) = Im

⎡

⎣ 1

|ΛL|
∑

k∈Λ∗
L

ei(k·x−2γ (k)t)

γ (k)

⎤

⎦ ,
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h
(0)
t (x) = Re

⎡

⎣ 1

|ΛL|
∑

k∈Λ∗
L

ei(k·x−2γ (k)t)

⎤

⎦ , (2.4)

h
(1)
t (x) = Im

⎡

⎣ 1

|ΛL|
∑

k∈Λ∗
L

γ (k) ei(k·x−2γ (k)t)

⎤

⎦ .

Each of these functions depend on the length scale L, however, we are suppressing that
dependence.

Lemma 1 Suppose ω > 0. For any x ∈ XΛL
and t ∈ R, the mapping Φh

t : XΛL
→ XΛL

is well-defined. In particular, for each x ∈ ΛL and t ∈ R, the components of Φh
t (x) =

{(qx(t),px(t))}x∈ΛL
are given by

qx(t) =
∑

y∈ΛL

qy(0)h
(0)
t (x − y) − py(0)h

(−1)
t (x − y) (2.5)

and

px(t) =
∑

y∈ΛL

qy(0)h
(1)
t (x − y) + py(0)h

(0)
t (x − y). (2.6)

Here, if necessary, the function values h
(m)
t (x −y) are defined by periodic extension, and we

regard x = {(qx(0),px(0))}x∈ΛL
.

Proof Taking a second derivative of (2.2), we find that for each x ∈ ΛL and any t ∈ R,

q̈x(t) = − 4ω2qx(t) − 4
ν∑

j=1

λj

(
2qx(t) − qx+ej

(t) − qx−ej
(t)
)
,

p̈x(t) = − 4ω2px(t) − 4
ν∑

j=1

λj

(
2px(t) − px+ej

(t) − px−ej
(t)
)
.

(2.7)

For any k ∈ Λ∗
L and t ∈ R, set

Qk(t) = 1√|ΛL|
∑

x∈ΛL

e−ik·xqx(t) and Pk(t) = 1√|ΛL|
∑

x∈ΛL

e−ik·xpx(t). (2.8)

Inserting (2.7) into the second derivative of (2.8), we find an equivalent system of uncoupled
differential equations. In fact, for each k ∈ Λ∗

L and any t ∈ R,

Q̈k(t) = − 4ω2Qk(t) − 4
ν∑

j=1

λj

(
2 − eikj − e−ikj

)
Qk(t) = −4γ (k)2Qk(t),

P̈k(t) = − 4ω2Pk(t) − 4
ν∑

j=1

λj

(
2 − eikj − e−ikj

)
Pk(t) = −4γ (k)2Pk(t),

(2.9)
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where γ is as in (2.3). The solution of (2.9) is given by

Qk(t) = Cke
−2iγ (k)t + C−ke

2iγ (k)t ,

Pk(t) = Dke
−2iγ (k)t + D−ke

2iγ (k)t ,
(2.10)

where −k is defined to be the element of Λ∗
L whose components are given by

(−k)j =
{

−kj , if |kj | < π,

π, otherwise.

The relationship between the coefficients in (2.10) above is derived using the fact that the
initial condition is real-valued, e.g.,

Qk(0) = Q−k(0) and Q̇k(0) = Q̇−k(0).

Using Fourier inversion, we recover the components of the flow from (2.10). In fact,

qx(t) = 1√|ΛL|
∑

k∈Λ∗
L

eik·xQk(t)

= 1√|ΛL|
∑

k∈Λ∗
L

Cke
i(k·x−2γ (k)t) + Cke

−i(k·x−2γ (k)t), (2.11)

and similarly, we find that

px(t) = 1√|ΛL|
∑

k∈Λ∗
L

Dke
i(k·x−2γ (k)t) + Dke

−i(k·x−2γ (k)t). (2.12)

To express these solutions explicitly in terms of the initial condition, we observe that

Qk(0) = Ck + C−k and Pk(0) = Dk + D−k, (2.13)

and introduce

Bk = 1√
2γ (k)

Pk(0) − i

√
γ (k)

2
Qk(0) with Bk = 1√

2γ (k)
P−k(0) + i

√
γ (k)

2
Q−k(0).

(2.14)
It is easy to see that

Qk(0) = i√
2γ (k)

(
Bk − B−k

)
and Pk(0) =

√
γ (k)

2

(
Bk + B−k

)
, (2.15)

and therefore,

Ck = iBk√
2γ (k)

and Dk =
√

γ (k)

2
Bk. (2.16)
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Plugging this into (2.11), we find that

qx(t) = 1√|ΛL|
∑

k∈Λ∗
L

iBk√
2γ (k)

ei(k·x−2γ (k)t) − iBk√
2γ (k)

e−i(k·x−2γ (k)t)

= 1

2
√|ΛL|

∑

k∈Λ∗
L

Qk(0)ei(k·x−2γ (k)t) + Qk(0)e−i(k·x−2γ (k)t)

+ i

2
√|ΛL|

∑

k∈Λ∗
L

Pk(0)

γ (k)
ei(k·x−2γ (k)t) − Pk(0)

γ (k)
e−i(k·x−2γ (k)t)

= 1√|ΛL|
∑

k∈Λ∗
L

Re
[
Qk(0)ei(k·x−2γ (k)t)

]− 1√|ΛL|
∑

k∈Λ∗
L

Im

[
Pk(0)

γ (k)
ei(k·x−2γ (k)t)

]
.

(2.17)

Moreover, one finds that

Re
[
Qk(0)ei(k·x−2γ (k)t)

]= 1√|ΛL|
∑

y∈ΛL

qy(0)Re
[
ei(k·(x−y)−2γ (k)t)

]
(2.18)

while

Im

[
Pk(0)

γ (k)
ei(k·x−2γ (k)t)

]
= 1√|ΛL|

∑

y∈ΛL

py(0) Im

[
1

γ (k)
ei(k·(x−y)−2γ (k)t)

]
. (2.19)

With the functions h
(m)
t , as defined in (2.4), we conclude that

qx(t) =
∑

y∈ΛL

qy(0)h
(0)
t (x − y) − py(0)h

(−1)
t (x − y), (2.20)

as claimed in (2.5). A similar calculation yields (2.6). Since the functions h
(m)
t are real

valued, so too are the solutions qx(t) and px(t). This proves Lemma 1. �

Remark 1 An analogue of (2.5) and (2.6) holds in the event that ω = 0. This is seen by
proceeding as in the proof of Lemma 1 and observing that now γ (0) = 0, but γ (k) = 0 for
k = 0. For k = 0, the formulas above are correct, and a simple calculation shows that, in this
case,

Q0(t) = Q0(0) + 2P0(0)t,

P0(t) = P0(0),
(2.21)

similar to (2.10). One easily sees that (2.5) and (2.6) still hold with the convention that

h
(−1)
t (x) = − 2t

|ΛL| + Im

⎡

⎣ 1

|ΛL|
∑

k∈Λ∗
L
\{0}

ei(k·x−2γ (k)t)

γ (k)

⎤

⎦ . (2.22)
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We end this subsection with the following crucial estimate which was proven in [11].

Lemma 2 Fix L ≥ 1 and consider the functions h
(m)
t as defined in (2.4) for m ∈ {−1,0,1}.

For any μ > 0, the bounds

∣∣∣h(0)
t (x)

∣∣∣≤ e
−μ(|x|−cω,λ max( 2

μ ,e(μ/2)+1)|t |)
,

∣∣∣h(−1)
t (x)

∣∣∣≤ c−1
ω,λe

−μ(|x|−cω,λ max( 2
μ ,e(μ/2)+1)|t |)

,

∣∣∣h(1)
t (x)

∣∣∣≤ cω,λe
μ/2e

−μ(|x|−cω,λ max( 2
μ ,e(μ/2)+1)|t |)

(2.23)

hold for all t ∈ R and x ∈ ΛL. Here |x| = ∑ν

j=1 |xi | and one may take cω,λ = (ω2 +
4
∑ν

j=1 λj )
1/2.

We refer the interested reader to Lemma 3.7 of [11] for the proof. Moreover, we stress
that Lemma 2 is valid for all ω ≥ 0.

2.2 A General Locality Estimate

Our first locality bound for the harmonic Hamiltonian follows directly from Lemmas 1
and 2. We state this as Theorem 3. In fact, it was observed in [15] that, in general, the Pois-
son brackets used to describe locality of the dynamics can be bounded by partial derivatives
of the corresponding solutions of Hamilton’s equations with respect to the initial conditions.
Theorem 3 below follows from this observation, the explicit form of the harmonic solutions
we demonstrated in Lemma 1, and the estimates we proved in Lemma 2. As we will see,
Theorem 1 is an immediate consequence of Theorem 3. Recall that we have defined A(1)

ΛL
to

be the set of observables A ∈ AΛL
for which: given any x ∈ ΛL, ∂A

∂qx
∈ AΛL

, ∂A
∂px

∈ AΛL
, and

‖∂A‖∞ = sup
x∈ΛL

max

(∥∥∥∥
∂A

∂qx

∥∥∥∥∞
,

∥∥∥∥
∂A

∂px

∥∥∥∥∞

)
< ∞. (2.24)

Theorem 3 Let X and Y be finite subsets of Z
ν and take L0 to be the smallest integer such

that X,Y ⊂ ΛL0 . For any L ≥ L0, let α
h,L
t denote the dynamics corresponding to H

ΛL
h . For

any μ > 0 and any observables A,B ∈ A(1)
ΛL0

with support of A in X and support of B in Y ,
the bound

∥∥{αh,L
t (A),B

}∥∥
∞ ≤ C‖∂A‖∞‖∂B‖∞

∑

x∈X,y∈Y

e
−μ(d(x,y)−cω,λ max( 2

μ ,e(μ/2)+1)|t |) (2.25)

holds for all t ∈ R. Here

d(x, y) =
ν∑

j=1

min
ηj ∈Z

|xj − yj + 2Lηj | (2.26)

is the distance on the torus and the constants may be taken as C = (2 + cω,λe
μ/2 + c−1

ω,λ)

with cω,λ = (ω2 + 4
∑ν

j=1 λj )
1/2.
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Proof The Poisson bracket is easy to calculate. In fact, for any x ∈ XΛL
,

[{
αh,L

t (A) ,B
}]

(x) =
∑

y∈Y

∂

∂qy

A
(
Φh,L

t (x)
) · ∂B

∂py

(x) − ∂

∂py

A
(
Φh,L

t (x)
) · ∂B

∂qy

(x). (2.27)

By the chain rule,

∂

∂qy

A
(
Φh,L

t (x)
)=

∑

x∈X

∂A

∂qx

(
Φh,L

t (x)
) · ∂qx

∂qy

(t) + ∂A

∂px

(
Φh,L

t (x)
) · ∂px

∂qy

(t) (2.28)

and a similar formula holds for ∂
∂py

A(Φ
h,L
t (x)). Now estimating (2.27), we find that

∥∥{αh,L
t (A) ,B

}∥∥
∞ ≤ ‖∂A‖∞‖∂B‖∞

∑

x∈X,y∈Y

∣∣∣h(−1)
t (x − y)

∣∣∣+ 2
∣∣∣h(0)

t (x − y)

∣∣∣

+
∣∣∣h(1)

t (x − y)

∣∣∣ , (2.29)

using Lemma 1. The bound in (2.25) now follows from Lemma 2. �

From Theorem 3, and specifically the bound (2.25), we see that for any μ > 0, the har-
monic velocity vh is essentially described by

vh(μ) = cω,λ max

(
2

μ
,e(μ/2)+1

)
. (2.30)

In fact, given (2.25) for some μ > 0, it is easy to see that for any 0 < ε < 1,

∑

x∈X,y∈Y

e−μd(x,y) ≤ e−εμd(X,Y ) min (|X|, |Y |)
∑

z∈ΛL

e−μ(1−ε)d(0,z), (2.31)

where we have set d(X,Y ) = minx∈X,y∈Y d(x, y). Thus, Theorem 1 is a simple consequence
of Theorem 3. It is interesting to note that for any L the quantity

∑

z∈ΛL

e−μ(1−ε)d(0,z) ≤
∑

z∈Zν

e−μ(1−ε)|z|, (2.32)

where |z| denotes the L1-metric on Z
ν . Given this and the fact that, for sufficiently large

L, the distance d(X,Y ) agrees with the L1-distance between X and Y , it is clear that the
estimate proven in Theorem 1 is genuinely independent of the length scale L.

Since the bounds are valid for any μ > 0, Theorem 3 demonstrates arbitrarily fast expo-
nential decay in space with a velocity that depends on μ. Typically, however, one is inter-
ested in the best possible estimates on vh given some decay rate. In this sense, the optimal
harmonic velocity, as described by (2.30), occurs when the equation

μ

2
= e(μ/2)+1 (2.33)

holds. It is easy to see that the solution to (2.33), denoted by μ0, satisfies 1/2 < μ0 < 1, and
therefore the corresponding velocity vh(μ0) ≤ 4cω,λ.
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2.3 The Harmonic Evolution of Weyl Functions

In preparation for our arguments in Sects. 3 and 4, we will now present a different proof
of our locality result, analogous to Theorem 3, valid for Weyl functions. Recall that a Weyl
function is an observable, generated by a function f : ΛL → C, with the form

[W(f )](x) = exp

⎡

⎣i
∑

x∈ΛL

Re[f (x)]qx + Im[f (x)]px

⎤

⎦ . (2.34)

One important property of the Weyl functions is typically referred to as the Weyl relation.
We state this as Proposition 4.

Proposition 4 (Weyl Relation) Let f,g : ΛL → C. We have that

{W(f ),W(g)} = − Im[〈f,g〉]W(f )W(g), (2.35)

where the inner product is taken in �2(ΛL).

Proof A direct calculation yields

{W(f ),W(g)} =
∑

x∈ΛL

∂

∂qx

W(f )
∂

∂px

W(g) − ∂

∂px

W(f )
∂

∂qx

W(g)

=
∑

x∈ΛL

(−Re[f (x)] Im[g(x)] + Im[f (x)]Re[g(x)])W(f )W(g).

Noting that

Im[〈f,g〉] = Im

[∑

x∈ΛL

f (x)g(x)

]

=
∑

x∈ΛL

(− Im[f (x)]Re[g(x)] + Re[f (x)] Im[g(x)])

proves the proposition. �

Another useful property of the Weyl functions is that the harmonic dynamics leaves
this class of observables invariant. This important fact, which follows immediately from
Lemma 1, is the content of the next proposition. Before stating this, it is convenient to intro-
duce notation for the convolution of two functions f,g : ΛL → C,

(f ∗ g)(x) =
∑

y∈ΛL

f (y)g(x − y), (2.36)

where, if necessary, g(x − y) is calculated by periodic extension.

Proposition 5 Let f : ΛL → C and take t ∈ R.

αh,L
t (W(f )) = W(ft), (2.37)
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where

ft = f ∗
(

h
(0)
t + i

2
(h

(−1)
t + h

(1)
t )

)
+ f ∗

(
i

2
(h

(1)
t − h

(−1)
t )

)
(2.38)

with h
(−1)
t , h

(0)
t , and h

(1)
t as in (2.4).

Proof For any point x ∈ XΛL
, we have that

[
αh,L

t (W(f ))
]
(x)

= exp

⎛

⎝i
∑

x∈ΛL

Re[f (x)]qx(t) + Im[f (x)]px(t)

⎞

⎠

= exp

⎛

⎝i
∑

x∈ΛL

Re[f (x)]
∑

y∈ΛL

qy(0)h
(0)
t (x − y) − py(0)h

(−1)
t (x − y)

⎞

⎠

× exp

⎛

⎝i
∑

x∈ΛL

Im[f (x)]
∑

y∈ΛL

qy(0)h
(1)
t (x − y) + py(0)h

(0)
t (x − y)

⎞

⎠

= exp

⎛

⎝i
∑

y∈ΛL

qy(0)
∑

x∈ΛL

Re[f (x)]h(0)
t (x − y) + Im[f (x)]h(1)

t (x − y)

⎞

⎠

× exp

⎛

⎝i
∑

y∈ΛL

py(0)
∑

x∈ΛL

Im[f (x)]h(0)
t (x − y) − Re[f (x)]h(−1)

t (x − y)

⎞

⎠

= [W(ft)
]
(x), (2.39)

where we have defined the function ft : ΛL → C by (2.38). �

It is obvious that Theorem 6 below follows immediately from Theorem 3, since the Weyl
functions are clearly in A(1)

ΛL
. We will here give a different, but equally short, proof which

uses the specific properties of Weyl functions.

Theorem 6 Let X and Y be finite subsets of Z
ν and take L0 to be the smallest integer such

that X,Y ⊂ ΛL0 . For any μ > 0, L ≥ L0, and any functions f,g : ΛL0 → C with support of
f in X and support of g in Y , the bound

∥∥{αh,L
t (W(f )),W(g)

}∥∥
∞ ≤ C‖f ‖∞‖g‖∞

∑

x∈X,y∈Y

e
−μ(d(x,y)−cω,λ max( 2

μ ,e(μ/2)+1)|t |) (2.40)

holds for all t ∈ R. Here, as in (2.26), d(x, y) is the distance on the torus and the constants
may be taken as C = (1 + cω,λe

μ/2 + c−1
ω,λ) with cω,λ = (ω2 + 4

∑ν

j=1 λj )
1/2.

Proof Combining Propositions 5 and 4, it is clear that

{
αh,L

t (W(f )),W(g)
}= {W(ft),W(g)} = − Im

[〈ft , g〉]W(ft )W(g). (2.41)
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In this case, the bound
∥∥{αh,L

t (W(f )),W(g)
}∥∥

∞ ≤ ∣∣Im [〈ft , g〉]∣∣ , (2.42)

readily follows. Appealing again to Proposition 5, we have that for any y ∈ ΛL,

ft (y) =
∑

x∈X

f (x)

(
h

(0)
t (x − y) − i

2
h

(−1)
t (x − y) − i

2
h

(1)
t (x − y)

)

+
∑

x∈X

f (x)

(
i

2
h

(1)
t (x − y) − i

2
h

(−1)
t (x − y)

)
, (2.43)

and therefore,

|〈ft , g〉| =
∣∣∣∣∣∣

∑

y∈Y

ft (y)g(y)

∣∣∣∣∣∣

≤ ‖f ‖∞ ‖g‖∞
∑

x∈X,y∈Y

|h(0)
t (x − y)| + |h(−1)

t (x − y)| + |h(1)
t (x − y)|. (2.44)

Theorem 6 now follows from Lemma 2. �

We end this section with a corollary of Theorem 6 that will be particularly useful in
the next sections. The locality bound we prove for the anharmonic dynamics is derived
by iterating a certain inequality involving the harmonic estimate. With this in mind, it is
useful to introduce the following family of decaying functions. For any μ > 0, consider
Fμ : [0,∞) → (0,∞) defined by

Fμ(r) = e−μr

(1 + r)ν+1
. (2.45)

Clearly, these function Fμ also depend on the quantity ν ≥ 1, which is the dimension of
the underlying lattice in our models, but we will suppress that dependence in our notation.
Unlike the bare exponential e−μr , these functions have the following nice property. There
exists a number Cν > 0 for which, given any pair of sites x, y ∈ Z

ν ,

∑

z∈Zν

Fμ(|x − z|)Fμ(|z − y|) ≤ CνFμ(|x − y|). (2.46)

Here one may take

Cν = 2ν+1
∑

z∈Zν

1

(1 + |z|)ν+1
. (2.47)

Functions of this type were introduced in [10], see also [11], as an aide in proving Lieb-
Robinson bounds. We will use them here as well.

We can rewrite the decay expressed in our harmonic estimates, i.e. (2.25), in terms of
these functions Fμ.

Corollary 1 Let X and Y be finite subsets of Z
ν and take L0 to be the smallest integer such

that X,Y ⊂ ΛL0 . For any μ > 0, ε > 0, L ≥ L0, and any functions f,g : ΛL0 → C with
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support of f in X and support of g in Y , the bound

∥∥{αh,L
t (W(f )),W(g)

}∥∥
∞ ≤ C ‖f ‖∞ ‖g‖∞ e(μ+ε)vh(μ+ε) |t | ∑

x∈X,y∈Y

Fμ(d(x, y)), (2.48)

holds for all t ∈ R. Here

C = (1 + cω,λe
(μ+ε)

2 + c−1
ω,λ) sup

s≥0

[
(1 + s)ν+1e−εs

]
(2.49)

and vh is as defined in (2.30).

3 On-Site Anharmonicities

In this section, we will prove a locality result, analogous to Theorem 6, for a specific class
of perturbations of the harmonic Hamiltonian. A much more general result, which follows
from the same basic arguments, is presented in the next section. We begin with a precise
statement of the models we consider, and then prove the result.

To make our basic technique more transparent, we will only consider on-site potentials
that are generated by a particular function V in this section, see Sect. 4 for a more general
result. Let V : R → R satisfy V ∈ C2(R), V ′ ∈ L1(R), V ′′ ∈ L∞(R), and suppose further
that the quantity

κV =
∫

R

|r| |V̂ ′(r)|dr (3.1)

is finite. Here V̂ ′ is the Fourier transform of V ′. Given such a function V and an integer
L ≥ 1, we define an anharmonic Hamiltonian HΛL : XΛL

→ R by setting

HΛL = H
ΛL
h +

∑

z∈ΛL

Vz, (3.2)

where for each z ∈ ΛL, the function Vz : XΛL
→ R is given by Vz(x) = V (qz).

As is discussed at the end of Sect. 2.3, we will state our result in terms of the functions
Fμ : [0,∞) → (0,∞) given by

Fμ(r) = e−μr

(1 + r)ν+1
, (3.3)

with ν > 0 corresponding to the dimension of the underlying lattice Z
ν . The goal of this

section is to prove the following result.

Theorem 7 Suppose V : R → R satisfies V ∈ C2(R), V ′ ∈ L1(R), V ′′ ∈ L∞(R), and κV ,
as in (3.1) above, is finite. Let X and Y be finite subsets of Z

ν and take L0 to be the small-
est integer such that X,Y ⊂ ΛL0 . For any L ≥ L0 and t ∈ R, let αL

t denote the dynamics
corresponding to HΛL . Then, for any μ > 0, ε > 0, and any functions f,g : ΛL0 → C with
support of f in X and support of g in Y , the bound

∥∥{αL
t (W(f )),W(g)

}∥∥∞ ≤ C ‖f ‖∞‖g‖∞ eδ|t | ∑

x∈X,y∈Y

Fμ (d(x, y)) (3.4)
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holds for all t ∈ R. Here one may take

C = (1 + cω,λe
(μ+ε)

2 + c−1
ω,λ) sup

s≥0

[
(1 + s)ν+1e−εs

]
(3.5)

and

δ = δ(μ, ε) = (μ + ε)vh(μ + ε) + CCνκV (3.6)

where vh is as in (2.30), Cν is in (2.47), and κV is in (3.1).

Before we prove Theorem 7, we comment on the corresponding anharmonic velocity.
With arguments similar to those given after the proof of Theorem 3, it is clear that Theorem 7
implies Theorem 2. In this case, we find that an upper bound on the anharmonic velocity for
this model is

vah(μ, ε) =
(

1 + ε

μ

)
vh(μ + ε) + CCνκV

μ
. (3.7)

We now present the proof.

Proof of Theorem 7 Our proof of this estimate is perturbative, and we begin by interpolating
between the harmonic and anharmonic dynamics. Fix L ≥ L0 as in the statement of the
theorem. Since we will regard both the harmonic and anharmonic dynamics on the same
volume ΛL, we drop the dependence of each on L. Observe that for any t > 0,

{αt (W(f )),W(g)} − {αh
t (W(f )),W(g)

}=
∫ t

0

d

ds

{
αs

(
αh

t−s(W(f ))
)
,W(g)

}
ds. (3.8)

Moreover, a direct calculation shows that

d

ds
αs

(
αh

t−s (W(f ))
) = αs

({
αh

t−s(W(f )),H
})− αs

(
αh

t−s ({W(f ),Hh})
)

= αs

({
αh

t−s(W(f )),H − Hh

})

=
∑

z∈ΛL

αs

({
αh

t−s(W(f )),Vz

})
. (3.9)

The Poisson bracket on the right-hand side of (3.9) can be simplified

{
αh

t−s(W(f )),Vz

}= {W(ft−s),Vz} = −i Im
[
ft−s(z)

]
W(ft−s)V ′

z . (3.10)

For the first equality above we used Proposition 5, and we have denoted by V ′
z the function

V ′
z : XΛL

→ R with V ′
z (x) = V ′(qz).

These calculations lead to a particularly simple differential equation and thus, eventu-
ally, the bound (3.17) appearing below. In fact, for t > 0 fixed and 0 ≤ s ≤ t , define the
function

Ψt(s) = {αs(α
h
t−s(W(f ))),W(g)}. (3.11)
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We have shown that

d

ds
Ψt (s) =

∑

z∈ΛL

{
αs

({
αh

t−s(W(f )),Vz

})
,W(g)

}

= iLt (s)Ψt (s) + Qt (s), (3.12)

where

Lt (s) = −
∑

z∈ΛL

Im
[
ft−s(z)

]
αs(V

′
z ),

Qt (s) = − i
∑

z∈ΛL

Im
[
ft−s(z)

]
αs

(
αh

t−s(W(f ))
) {

αs(V
′
z ),W(g)

}
,

(3.13)

and the final equality in (3.12) follows from an application of the Leibnitz rule for Poisson
brackets. Since for each fixed s, Lt (s) is a real-valued function of phase space, the solu-
tion Ut of

d

ds
Ut (s) = −iLt (s)Ut (s) with Ut(0) = 1, (3.14)

is a complex exponential. In addition, it is easy to see that

d

ds
(Ψt (s)Ut (s)) = Qt (s)Ut (s), (3.15)

and therefore,

Ψt(t)Ut (t) = Ψt(0) +
∫ t

0
Qt (s)Ut (s) ds, (3.16)

from which

‖{αt (W(f )),W(g)}‖∞ ≤ ∥∥{αh
t (W(f )),W(g)

}∥∥
∞

+
∑

z∈ΛL

∫ t

0

∣∣Im
[
ft−s(z)

]∣∣ ∥∥{αs(V
′
z ),W(g)

}∥∥∞ ds, (3.17)

readily follows.
Now, if V ′

z was a Weyl function, then we could immediately iterate the inequality in
(3.17) and derive a bound. This is not the case, however, our assumptions on V allow us to
write V ′

z as an average of Weyl functions through its Fourier representation. In fact, we write
the Fourier transform of V ′ as

V̂ ′(r) = 1

2π

∫

R

e−iqr V ′(q) dq, (3.18)

and by inversion, one has that

V ′(q) =
∫

R

eirq V̂ ′(r) dr. (3.19)

This implies that, as a function of phase space, V ′
z can be expressed as

V ′
z =

∫

R

W(rδz)V̂ ′(r) dr (3.20)
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where rδz : ΛL → R is the function that has value r at z and 0 otherwise. Inserting (3.20)
into (3.17), we have that

‖{αt (W(f )),W(g)}‖∞

≤ ∥∥{αh
t (W(f )),W(g)

}∥∥∞

+
∑

z∈ΛL

∫ t

0

∣∣Im
[
ft−s(z)

]∣∣
∫

R

∣∣V̂ ′(r)
∣∣∥∥ {αs (W(rδz)) ,W(g)}∥∥∞ dr ds. (3.21)

At this stage, we can finally iterate the inequality. First, however, we insert the harmonic
bound found in Corollary 1.

Recall that for any μ > 0 and ε > 0 we have established (2.48) with a constant C as
in (3.5). With equation (2.43), it is easy to see that, for any μ > 0 and ε > 0

|Im[ft (z)]| ≤ C ‖f ‖∞ e(μ+ε)vh(μ+ε)|t |∑

x∈X

Fμ(d(x, z)), (3.22)

also holds for any z ∈ ΛL and t ∈ R. To ease the notation a bit, we will denote by ṽ =
(μ + ε)vh(μ + ε). Using these bounds, the inequality in (3.21) now takes the form

‖{αt (W(f )),W(g)}‖∞

≤ C ‖f ‖∞ ‖g‖∞ eṽt
∑

x∈X,y∈Y

Fμ(d(x, y))

+ C ‖f ‖∞
∑

x∈X

∑

z∈ΛL

Fμ(d(x, z))

∫ t

0
eṽ(t−s)

∫

R

|V̂ ′(r)|∥∥ {αs (W(rδz)) ,W(g)}∥∥∞ dr ds.

(3.23)

Upon iterating (3.23) m ≥ 1 times, we find that

‖{αt (W(f )),W(g)}‖∞ ≤ C ‖f ‖∞ ‖g‖∞ eṽt
∑

x∈X,y∈Y

m∑

n=0

an(x, y; t) + Rm+1(t), (3.24)

where

a0(x, y; t) = Fμ(d(x, y)), (3.25)

a1(x, y; t) = Ct

∫

R

|r| ∣∣V̂ ′(r)
∣∣ dr

∑

z∈ΛL

Fμ (d(x, z))Fμ (d(z, y))

≤ C κV Cν tFμ (d(x, y)) , (3.26)

and in general,

an(x, y; t) = (Ct)n

n!

(
n∏

k=1

∫

R

|rk|
∣∣V̂ ′(rk)

∣∣ drk

)
∑

z1,...,zn∈ΛL

Fμ (d(x, z1)) · · ·Fμ (d(zn, y))

≤ (C κV Cν t)n

n! Fμ (d(x, y)) , (3.27)

for any 1 ≤ n ≤ m. In (3.26) and (3.27), we have used (2.46) several times.
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From Lemma 6, found in Sect. 5, it is easy to see that the apriori estimate

‖{αs(W(rδz)),W(g)}‖∞ ≤ C1 |Y | |r| ‖g‖∞ exp
(
C2 t2

)
(3.28)

holds for all 0 ≤ s ≤ t . Thus, for t > 0 fixed, the remainder term Rm+1(t) converges to zero
as m → ∞. In fact,

Rm+1(t) ≤ C1 |X| |Y | ‖f ‖∞‖g‖∞eṽt+C2t2 (C κV Cνt)
m+1

(m + 1)! . (3.29)

We have proven that

‖{αt (W(f )),W(g)}‖∞ ≤ C ‖f ‖∞ ‖g‖∞ e(ṽ+C κV Cν)t
∑

x∈X,y∈Y

Fμ(d(x, y)), (3.30)

i.e. (3.4) as claimed. �

4 Multiple Site Anharmonicities

In this section, we will generalize Theorem 7 in such a way that it covers perturbations
involving long range interactions. As in the previous sections, we will be fixing some integer
L ≥ 1 and considering only finite volumes ΛL ⊂ Z

ν .
We will introduce these perturbations quite generally and then discuss the assumptions

necessary to prove our locality result. To each subset Z ⊂ ΛL, we will assign a function
V (·;Z) : R

Z → R and a corresponding function of phase space VZ : XΛL
→ R defined by

setting

VZ(x) = V ({qz}z∈Z;Z) . (4.1)

Here {qz}z∈Z is regarded as a vector in R
Z and the number V ({qz}z∈Z;Z) is calculated by

evaluating V (·;Z) with qz as the value in the z-th component for each z ∈ Z. With this
understanding, we will use the notation

∂zVZ = ∂

∂qz

VZ = ∂zV (·;Z), (4.2)

to denote the partial derivatives of VZ .
In general, the finite volume anharmonic Hamiltonians we consider are of the form HΛL :

XΛL
→ R with

HΛL = H
ΛL
h +

∑

Z⊂ΛL

VZ, (4.3)

where the sum above is over all subsets of ΛL. As we saw in Sect. 3, in order to prove
our locality result, we need some assumptions on the functions VZ . We will now list these
explicitly below.

First, we use Lemma 4, proven in Sect. 5, to provide explicit bounds on the components
of the flow which, in particular, prevent the solutions from blowing-up in finite time. For
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these estimates, we assume the perturbation above satisfies:

(i) For each Z ⊂ ΛL, the function VZ has well-defined first order partial derivatives.
(ii) There exist numbers C1 ≥ 0, C̃1 ≥ 0, and μ1 ≥ 0 such that for each x ∈ ΛL and any

x ∈ XΛL
,

⎛

⎝
∑

Z⊂ΛL

|∂xVZ(x)|
⎞

⎠
2

≤ C1

∑

y∈ΛL

(q2
y + C̃1)Fμ1 (d(x, y)) . (4.4)

The decaying functions Fμ are as defined at the end of Sect. 2.3.

Next, much like in the proof of Theorem 7, we will need an apriori estimate on the Pois-
son bracket of specific, dynamically evolved observables. This is the content of Lemma 6
found in the next section. To prove it we use Lemma 5, and therefore, we must assume

(iii) For each Z ⊂ ΛL, the function VZ has well-defined second order partial derivatives.
(iv) There exist numbers C2 ≥ 0 and μ2 ≥ 0 for which: given any pair x, y ∈ ΛL, the bound

∑

Z⊂ΛL

∣∣[∂x∂yVZ

]
(x)
∣∣≤ C2Fμ2 (d(x, y)) , (4.5)

holds for all points x ∈ XΛL
.

Lastly, we need the quantities that arise in our iteration scheme to be well-defined. For
this we assume

(v) For each Z ⊂ ΛL, the first order partial derivatives of VZ are integrable. By this we
mean that given Z ⊂ ΛL and z ∈ Z, the function ∂zV (·;Z) is in L1(RZ) with respect
to Lebesgue measure. In this case, the Fourier transform of these functions exists, and
we will write

∂̂zV (r;Z) = 1

(2π)|Z|

∫

RZ

e−ir·q ∂zV (q;Z)dq, (4.6)

for any r ∈ R
Z .

(vi) For each Z ⊂ ΛL, we assume that the Fourier inversion formula holds for all first order
partial derivatives of VZ . Thus, for any q ∈ R

Z ,

∂zV (q;Z) =
∫

RZ

eir·q ∂̂zV (r;Z)dr, (4.7)

and therefore, we will write

[
∂zVZ

]
(x) =

∫

RZ

[W(r · δZ)] (x) ∂̂zV (r;Z)dr, (4.8)

where the function r · δZ : ΛL → R is given by

[r · δZ](x) =
∑

z∈Z

rz δz(x) hence [W(r · δZ)] (x) = exp

[
i
∑

z∈Z

rzqz

]
, (4.9)

as required.
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(vii) There exist numbers C3 ≥ 0 and μ3 ≥ 0 such that given any points x, y ∈ ΛL, the
bound

∑

Z⊂ΛL
x,y∈Z

∫

RZ

|r| · ∣∣∇̂V (r;Z)
∣∣ dr ≤ C3 Fμ3 (d(x, y)) . (4.10)

Here the vector-valued function ∇̂V (·;Z) : R
Z → C

Z has components ∂̂zV (·;Z) for
each z ∈ Z. The number |r|, corresponding to some r ∈ R

Z , is taken as |r| =∑z∈Z |rz|,
but, as is seen in the proof below, any norm on R

Z satisfying |rz| ≤ ‖r‖ will suffice.
As will become apparent below, we interpret the function Fμ3 in assumption (vii) as
our crucial estimate on the range of the interactions.

We now state our most general result.

Theorem 8 Let X and Y be finite subsets of Z
ν and take L0 ≥ 1 to be the smallest integer

such that X,Y ⊂ ΛL0 . For any L ≥ L0 and t ∈ R, let αL
t denote the dynamics corresponding

to the anharmonic Hamiltonian HΛL in (4.3), and suppose that the perturbation satisfies
assumptions (i)–(vii) listed above. Then, for each ε > 0 and any functions f,g : ΛL0 → C

with the support of f in X and the support of g in Y ,

∥∥{αL
t (W(f )),W(g)

}∥∥
∞ ≤ C ‖f ‖∞‖g‖∞ eδ|t | ∑

x∈X,y∈Y

Fμ3(d(x, y)) (4.11)

holds for any t ∈ R. Here

C = (1 + cω,λe
(μ3+ε)

2 + c−1
ω,λ) sup

s≥0

[
(1 + s)ν+1e−εs

]
(4.12)

and

δ = δ(ε) = (μ3 + ε) vh(μ3 + ε) + C C3 C2
ν , (4.13)

where vh is as in (2.30), Cν is in (2.47), and C3 is in (4.10).

One important difference between the bound we prove in Theorem 8 above, in contrast
to the one proven in Theorem 7, is that the spatial decay rate in (4.11) can be no greater than
the rate μ3 appearing in (4.10). If μ3 > 0, then there is a corresponding velocity for this
anharmonic system

vah(ε) =
(

1 + ε

μ3

)
vh(μ3 + ε) + C C3 C2

ν

μ3
. (4.14)

Since the case of μ3 = 0 represents only polynomial decay in the interaction range, as mea-
sured by (4.10), the bound in (4.11) at most decays polynomially in distance between the
supports of f and g as well.

Example 1 To clarify the general assumptions on the perturbation introduced above, we
will consider a simple model with pair interactions generated by a single function. One
can compare this example with the on-site, anharmonic Hamiltonian analyzed in Sect. 3.
Let V : R

2 → R be given and fix some number μ ≥ 0. For each L ≥ 1 and any Z ⊂ ΛL,
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define

V (·;Z) =
{

Fμ(d(z1, z2))V (·) if Z = {z1, z2},
0 otherwise,

(4.15)

and thereby, the anharmonic Hamiltonian

HΛL = H
ΛL
h +

∑

z1,z2∈ΛL

V{z1,z2}, (4.16)

with V{z1,z2}(x) = Fμ (d(z1, z2)) · V (qz1 , qz2). As one can easily check, the basic assump-
tions (i)–(iv) follow if V has well-defined, second order partial derivatives and there exist
numbers C1, C̃1, and C2 such that

max
i=1,2

|∂iV (x, y)| ≤ C1

(
|x| + |y| + C̃1

)
(4.17)

and

max
i,j∈{1,2}

∣∣∂i∂jV (x, y)
∣∣≤ C2. (4.18)

If both first order partial derivatives of V are integrable and satisfy the Fourier inversion
formula, then the condition (vii) is satisfied when

∫

R

∫

R

(|x| + |y|) (∣∣∂̂1V (x, y)
∣∣+ ∣∣∂̂2V (x, y)

∣∣) dx dy < ∞. (4.19)

Thus, under the above conditions, the model described by (4.16) satisfies the assumptions
of Theorem 8, and hence the corresponding locality result (4.11) is valid.

Proof of Theorem 8 Much of the argument in the proof of Theorem 7 also applies here.
Again, we fix L, regard both Hamiltonians on the same volume, drop the dependence of
each of the dynamics on L, and interpolate. Let t > 0 and set

Φt(s) = {αs(α
h
t−s(W(f ))),W(g)} (4.20)

for 0 ≤ s ≤ t . The calculation

d

ds
αs(α

h
t−s(W(f ))) =

∑

Z⊂ΛL

αs

({
αh

t−s(W(f )),VZ

})

= −i
∑

Z⊂ΛL

∑

z∈Z

Im
[
ft−s(z)

]
αs (W(ft−s)) · αs (∂zVZ) , (4.21)

follows readily, and therefore, we derive a differential equation analogous to (3.12); namely

d

ds
Φt(s) = iL̃t (s)Φt (s) + Q̃t (s), (4.22)

where

L̃t (s) = −
∑

Z⊂ΛL

∑

z∈Z

Im
[
ft−s(z)

]
αs(∂zVZ),

Q̃t (s) = − i
∑

Z⊂ΛL

∑

z∈Z

Im
[
ft−s(z)

]
αs

(
αh

t−s(W(f ))
) {αs(∂zVZ),W(g)} .

(4.23)
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Arguing as before, we arrive at the bound

‖{αt (W(f )),W(g)}‖∞ ≤ ∥∥{αh
t (W(f )),W(g)

}∥∥
∞

+
∑

Z⊂ΛL

∑

z∈Z

∫ t

0

∣∣Im
[
ft−s(z)

]∣∣‖{αs(∂zVZ),W(g)}‖∞ ds.

(4.24)

Inserting (4.8) into (4.24) and using the harmonic bounds from Corollary 1 with μ = μ3,
we find that

‖{αt (W(f )),W(g)}‖∞

≤ C ‖f ‖∞ ‖g‖∞ ev̂t
∑

x∈X,y∈Y

Fμ3(d(x, y))

+ C ‖f ‖∞
∑

Z⊂ΛL

∑

z∈Z

∑

x∈X

Fμ3(d(x, z))

×
∫ t

0
ev̂(t−s)

∫

RZ

|∂̂zV (r;Z)|∥∥ {αs (W(r · δZ)) ,W(g)}∥∥∞ dr ds, (4.25)

with C as in (4.12), and we have set v̂ = (μ3 + ε)vh(μ3 + ε) for notational convenience.
After iterating (4.25) m ≥ 1 times, we find that

‖{αt (W(f )),W(g)}‖∞ ≤ C ‖f ‖∞ ‖g‖∞ ev̂t
∑

x∈X,y∈Y

m∑

n=0

ãn(x, y; t) + R̃m+1(t), (4.26)

where

ã0(x, y; t) = Fμ3(d(x, y)), (4.27)

ã1(x, y; t) = Ct
∑

Z⊂ΛL

∑

z1,z2∈Z

∫

RZ

‖r · δZ‖∞ · |∂̂z1V (r;Z)|dr Fμ3 (d(x, z1))Fμ3 (d(z2, y))

≤ Ct
∑

z1,z2∈ΛL

Fμ3 (d(x, z1))Fμ3 (d(z2, y))
∑

Z⊂ΛL
z1,z2∈Z

∫

RZ

|r| · |∇̂V (r;Z)|dr

≤ C C3 t
∑

z1,z2∈ΛL

Fμ3 (d(x, z1)) Fμ3 (d(z1, z2)) Fμ3 (d(z2, y))

≤ C C3 C2
ν tFμ3 (d(x, y)) , (4.28)

and in general,

ãn(x, y; t)

= (Ct)n

n!
∑

Z1,Z2,...,Zn⊂ΛL

∑

z1,1,z1,2∈Z1

∑

z2,1,z2,2∈Z2

· · ·

×
∑

zn,1,zn,2∈Zn

⎛

⎝
n∏

j=1

∫

R
Zj

‖rj · δZj
‖∞
∣∣∣∂̂zj,1V (rj ;Zj)

∣∣∣ drj

⎞

⎠
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× Fμ3

(
d(x, z1,1)

) · Fμ3

(
d(z1,2, z2,1)

) · · ·Fμ3

(
d(zn,2, y)

)

≤ (Ct)n

n!
∑

z1,1,z1,2∈ΛL

∑

z2,1,z2,2∈ΛL

· · ·
∑

zn,1,zn,2∈ΛL

Fμ3

(
d(x, z1,1)

)

× Fμ3

(
d(z1,2, z2,1)

) · · ·Fμ3

(
d(zn,2, y)

)

×
n∏

j=1

∑

Zj ⊂ΛL

zj,1,zj,2∈Zj

∫

R
Zj

|rj | · |∇̂V (rj ;Zj)|drj

≤ (C C3 t)n

n!
∑

z1,1,z1,2,z2,1,z2,2,...,zn,1,zn,2∈ΛL

Fμ3

(
d(x, z1,1)

) · Fμ3

(
d(z1,1, z1,2)

)

× Fμ3

(
d(z1,2, z2,1)

) · · ·Fμ3

(
d(zn,2, y)

)

≤ (C C3 C2
ν t)n

n! Fμ3 (d(x, y)) , (4.29)

for any 1 ≤ n ≤ m. As before, with t > 0 fixed, the remainder term R̃m+1(t) converges to
zero as m → ∞. Thus we have proven (4.11) as claimed. �

5 A Priori Solution Estimates

In this section, we will prove a variety of a priori estimates which will be useful in our proofs
of the main results. The underlying argument which facilitates most of the lemmas below is
the well-known Gronwall inequality. We state and prove a version of this estimate which is
tailored to the present work. A more general bound of this type appears, e.g. in [1].

Lemma 3 (Gronwall Inequality) Let u : R → C satisfy

|u(t)| ≤ α(t) +
∫ t

a

f (t, s) |u(s)|ds (5.1)

for all t in [a, b]. If α is non-negative and non-decreasing and f is non-negative and con-
tinuous with f (·, s) nondecreasing for each fixed s ∈ [a, b], then

|u(t)| ≤ α(t) exp

(∫ t

a

f (t, s) ds

)
(5.2)

for all t in [a, b].

Proof We prove (5.2) pointwise. Let t0 ∈ [a, b] and observe that

|u(t)| ≤ α(t0) +
∫ t

a

f (t0, s) |u(s)|ds, (5.3)

holds for all t ∈ [a, t0]. Define

m(t) = α(t0) +
∫ t

a

f (t0, s)|u(s)|ds. (5.4)
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Clearly, |u(t)| ≤ m(t) and the bound

m′(t) = f (t0, t) |u(t)| ≤ f (t0, t)m(t), (5.5)

readily implies

|u(t)| ≤ m(t) ≤ m(0) exp

(∫ t

a

f (t0, s) ds

)
, (5.6)

for any t ∈ [a, t0]. Taking t = t0, we have proven (5.2). �

The applications we have in mind concern bounding the solutions of our Hamiltonian
flows. Recall that our general, finite volume, multi-site Hamiltonian, HΛL : XΛL

→ R, is of
the form

HΛL = H
ΛL
h +

∑

Z⊂ΛL

VZ, (5.7)

and we need a variety of assumptions on the perturbations VZ to prove our estimates.
We begin with a basic proof of boundedness for the flow Φt : XΛL

→ XΛL
corresponding

to (5.7). As is demonstrated in [9], boundedness follows if the perturbation is dominated by
the harmonic part. For the sake of completeness, we include this argument here.

We assume the perturbation in (5.7) above satisfies: There exist numbers C1 ≥ 0, C̃1 ≥ 0,
and μ1 ≥ 0 such that

⎛

⎝
∑

Z⊂ΛL

|∂xVZ(x)|
⎞

⎠
2

≤ C1

∑

y∈ΛL

(q2
y + C̃1)Fμ1 (d(x, y)) , (5.8)

for each x ∈ ΛL and any x ∈ XΛL
.

Lemma 4 Fix L ≥ 1 and let Φt denote the flow corresponding to the Hamiltonian HΛL de-
fined in (5.7) above. If the perturbation satisfies (5.8) described above, then for any x ∈ XΛL

the components of the flow Φt(x) = {(qx(t),px(t))}x∈ΛL
satisfy

sup
x∈ΛL

max (|qx(t)|, |px(t)|) ≤ K1 exp(K2 t), (5.9)

where

K1 = K1(x) =
√

sup
x∈ΛL

(
p2

x(0) + q2
x (0) + C̃1

)
, (5.10)

and

K2 =
∣∣∣∣∣∣
ω2 + 2

ν∑

j=1

λj − 1

∣∣∣∣∣∣
+ 4

ν∑

j=1

λj + 1

2
+ C1

2

∑

x∈ΛL

Fμ1 (d(0, x)) . (5.11)

Proof Fix L ≥ 1, take x ∈ ΛL, and choose x ∈ XΛL
. Consider the function defined by setting

Ex(t) = p2
x(t) + q2

x (t) + C̃1, (5.12)
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where C̃1 > 0 is the number appearing in (5.8). From Hamilton’s equations, we have that

Ėx(t) = 2px(t)ṗx(t) + 2qx(t)q̇x(t)

= −4

⎛

⎝ω2 + 2
ν∑

j=1

λj − 1

⎞

⎠ px(t) qx(t) + 4px(t)

ν∑

j=1

λj

(
qx+ej

(t) + qx−ej
(t)
)

− 2px(t)
∑

Z⊂ΛL

[∂xVZ] (Φt (x)) , (5.13)

and therefore,
∣∣Ėx(t)

∣∣≤
∑

y∈ΛL

Ax,yEy(t) = (AE(t))x (5.14)

where the |ΛL| × |ΛL| matrix A = (Ax,y) is given by

Ax,y =

⎧
⎪⎨

⎪⎩

2|ω2 + 2
∑ν

j=1 λj − 1| + 4
∑ν

j=1 λj + 1 + C1 Fμ1(0) if y = x,

2λj + C1 Fμ1(1) if y = x ± ej ,

C1 Fμ1(d(x, y)) otherwise,

(5.15)

and (AE(t))x is the x-th component of this vector. Denote by E the vector-valued function
whose components are Ex and equip R

|ΛL| with the sup-norm ‖ · ‖∞. With (5.14) it is clear
that

∥∥Ė(t)
∥∥∞ ≤ ‖AE(t)‖∞ , (5.16)

and therefore,

‖E(t)‖∞ ≤ ‖E(0)‖∞ +
∫ t

0

∥∥Ė(s)
∥∥

∞ ds ≤ ‖E(0)‖∞ +
∫ t

0
‖AE(s)‖∞ ds. (5.17)

Letting u(t) = ‖E(t)‖∞, Lemma 3 implies

max
(|qx(t)|2, |px(t)|2

)≤ ‖E(t)‖∞ ≤ ‖E(0)‖∞ exp (‖A‖∞ t) , (5.18)

from which (5.9) is clear. �

As will become clear in the proof of Lemma 6 below, the main quantities of interest for
us are the derivatives of the components of the flow with respect to the initial conditions. The
next lemma provides explicit estimates on these functions. To prove it we need the following
additional assumption on our perturbation. Assume there exists constants C2 ≥ 0 and μ2 ≥ 0
for which: given any L ≥ 1 and any pair x, y ∈ ΛL, the bound

∑

Z⊂ΛL

∣∣[∂x∂yVZ

]
(x)
∣∣≤ C2Fμ2 (d(x, y)) , (5.19)

holds for all points x ∈ XΛL
.

Lemma 5 Fix L ≥ 1 and let Φt denote the flow corresponding to the Hamiltonian HΛL

defined in (5.7) above. If the perturbation satisfies (5.8) and (5.19), then for any x ∈ XΛL
the
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components of the flow Φt(x) = {(qx(t),px(t))}x∈ΛL
satisfy

sup
x,y∈ΛL

max

(∣∣∣∣
∂qx(t)

∂qy(0)

∣∣∣∣ ,
∣∣∣∣
∂qx(t)

∂py(0)

∣∣∣∣

)
≤ max(1,2t) exp(K t2), (5.20)

and

sup
x,y∈ΛL

max

(∣∣∣∣
∂px(t)

∂qy(0)

∣∣∣∣ ,
∣∣∣∣
∂px(t)

∂py(0)

∣∣∣∣

)
≤ 1 + t

⎛

⎝K + 2
ν∑

j=1

λj

⎞

⎠max(1,2t) exp(K t2), (5.21)

where

K = 2ω2 + 8
ν∑

j=1

λj + C2

∑

x∈ΛL

Fμ2 (d(0, x)) . (5.22)

Proof We begin with a proof of (5.20). Using Hamilton’s equations, we find that

qx(t) − qx(0) − 2 t px(0) = 2
∫ t

0

∫ s

0
ṗx(r) dr ds

= −4

⎛

⎝ω2 + 2
ν∑

j=1

λj

⎞

⎠
∫ t

0
(t − s) qx(s) ds

+ 4
ν∑

j=1

λj

∫ t

0
(t − s)

(
qx+ej

(s) + qx−ej
(s)
)

ds

− 2
∑

Z⊂ΛL

∫ t

0
(t − s) [∂xVZ] (Φs(x)) ds (5.23)

and therefore

∂qx(t)

∂qy(0)
= δx(y) − 4

⎛

⎝ω2 + 2
ν∑

j=1

λj

⎞

⎠
∫ t

0
(t − s)

∂qx(s)

∂qy(0)
ds

+ 4
ν∑

j=1

λj

∫ t

0
(t − s)

(
∂qx+ej

(s)

∂qy(0)
+ ∂qx−ej

(s)

∂qy(0)

)
ds

− 2
∑

z∈ΛL

∑

Z⊂ΛL

∫ t

0
(t − s)

[
∂z∂xVZ

]
(Φs(x)) · ∂qz(s)

∂qy(0)
ds. (5.24)

More succinctly, we have found that

∣∣∣∣
∂qx(t)

∂qy(0)

∣∣∣∣≤ δx(y) +
∑

z∈ΛL

∫ t

0
(t − s)Ax,z

∣∣∣∣
∂qz(s)

∂qy(0)

∣∣∣∣ ds (5.25)
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where the |ΛL| × |ΛL| matrix A = (Ax,z) has entries

Ax,z =

⎧
⎪⎪⎨

⎪⎪⎩

4(ω2 + 2
∑ν

j=1 λj ) + 2C2Fμ2(0) if z = x,

4λj + 2C2Fμ2(1) if z = x ± ej ,

2C2Fμ2(d(x, z)) otherwise.

(5.26)

If, for each fixed y ∈ ΛL, we denote by ∂yq : R → R
|ΛL| the vector-valued function

whose components are given by | ∂qx (t)

∂qy (0)
|, then (5.25) implies

∥∥∂yq(t)
∥∥∞ ≤ 1 +

∫ t

0
(t − s)

∥∥A∂yq(s)
∥∥∞ ds. (5.27)

Again letting u(t) = ‖∂yq(t)‖∞, Lemma 3 yields the estimate

∥∥∂yq(t)
∥∥

∞ ≤ exp

(‖A‖∞ t2

2

)
. (5.28)

Quite similarly, the bound

∣∣∣∣
∂qx(t)

∂py(0)

∣∣∣∣≤ 2t δx(y) +
∑

z∈ΛL

∫ t

0
(t − s)Ax,z

∣∣∣∣
∂qz(s)

∂qy(0)

∣∣∣∣ ds, (5.29)

follows from (5.23) with the same matrix A. This proves (5.20).
The bound for px(t) follows from (5.20). In fact, it is easy to see that

px(t) = px(0) − 2

⎛

⎝ω2 + 2
ν∑

j=1

λj

⎞

⎠
∫ t

0
qx(s) ds

+ 2
ν∑

j=1

λj

∫ t

0

(
qx+ej

(s) + qx−ej
(s)
)

ds −
∑

Z⊂ΛL

∫ t

0
[∂xVZ] (Φs(x)) ds. (5.30)

Using (5.20), (5.21) readily follows. �

Lemma 6 Let X,Y ⊂ Z
ν be finite sets and take L0 ≥ 1 large enough so that X,Y ⊂ ΛL0 .

For any L ≥ L0 and t ∈ R, denote by αL
t the dynamics corresponding to (5.7). If the

perturbation satisfies (5.8) and (5.19), then there exist positive numbers K1 and K2,
both independent of L, for which: given any functions f : X → C and g : Y → C, the
bound

∥∥{αL
t (W(f )) ,W(g)

}∥∥∞ ≤ K1 |X| |Y | ‖f ‖∞ ‖g‖∞ exp(K2 t2), (5.31)

holds for all t ∈ R.

Proof We first fix L ≥ L0 as in the statement of the lemma and prove the estimate on ΛL. In
this case, we suppress the dependence of most quantities on L to ease notation. Now, recall
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that for any fixed point x,

[{αt (W(f )),W(g)}] (x) =
∑

y∈ΛL

∂

∂qy

[
αt (W(f ))

]
(x) · ∂

∂py

[
W(g)

]
(x)

−
∑

y∈ΛL

∂

∂py

[
αt (W(f ))

]
(x) · ∂

∂qy

[
W(g)

]
(x). (5.32)

Since

∂

∂py

[
W(g)

]
(x) = i Im

[
g(y)

] [
W(g)

]
(x) and

∂

∂qy

[
W(g)

]
(x) = i Re

[
g(y)

] [
W(g)

]
(x),

(5.33)

the sums in (5.32) above are only over those y in the support of g. The derivative of the
time-evolved quantities may also be calculated, e.g.,

∂

∂qy

[
αt (W(f ))

]
(x) = i

⎛

⎝
∑

x∈ΛL

Re
[
f (x)

] · ∂qx(t)

∂qy

+ Im
[
f (x)

] · ∂px(t)

∂qy

⎞

⎠ ·[αt (W(f ))
]
(x).

(5.34)
Clearly, the sum in (5.34) is only over those x in the support of f , and a similar formula
holds for the derivative with respect to py . Thus,

∣∣[{αt (W(f )),W(g)}] (x)
∣∣

≤ 4‖f ‖∞ ‖g‖∞
∑

x∈X,y∈Y

max

(∣∣∣∣
∂qx(t)

∂qy

∣∣∣∣ ,
∣∣∣∣
∂px(t)

∂qy

∣∣∣∣ ,
∣∣∣∣
∂qx(t)

∂py

∣∣∣∣ ,
∣∣∣∣
∂px(t)

∂py

∣∣∣∣

)
.

Using Lemma 5, (5.31) immediately follows. �
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